SHOCK IPOVOLEMICO ED EMORRAGICO

INDICAZIONI ALLA TRASFUSIONE

VOLEMIA E VOLUME EMATICO

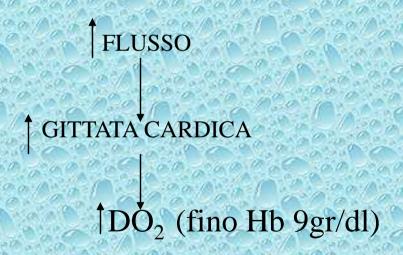
FLUIDI	UOMINI	DONNE
VOLEMIA	600mL/Kg	500mL/Kg
VOLUME EMATICO	66mL/Kg	60mL/Kg
PLASMA	40 mL/Kg	36mL/Kg
ERITROCITI	26 mL/Kg	24mL/Kg
		101 N 200

CLASSIFICAZIONE DELLE EMORRAGIE IN BASE ALL'ENTITA' DELLA PERDITA EMATICA

PARAMETRI	CLASSE I	CLASSE II	CLASSE III	CLASSE IV
% di perdita ematica	· <15%	15-30%	30-40%	>40%
Frequenza	<100	>100	>120	>140
Pressione arteriosa	normale	normale	ridotta	ridotta
Escrezione urinaria	>30 ml/h	20-30ml/h	5-15ml/h	<5ml/h
Stato mentale	ansioso	agitato	confuso	letargico

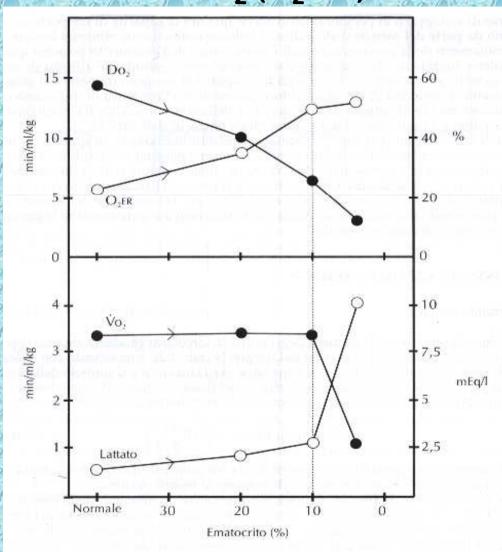
TRASPORTO DELL'OSSIGENO

- Contenuto ematico di O_2 Ca O_2 Ca O_2 = $(1.34xHbxSaO_2)+(0.003xPaO_2)$ v.n.
 - 19.7ml/100ml
- Trasporto O₂ nel sangue arterioso
 DO₂


 $DO_2 = Q_c \times CaO_2 \times 10$ v.n. 520-570 ml/min/m²

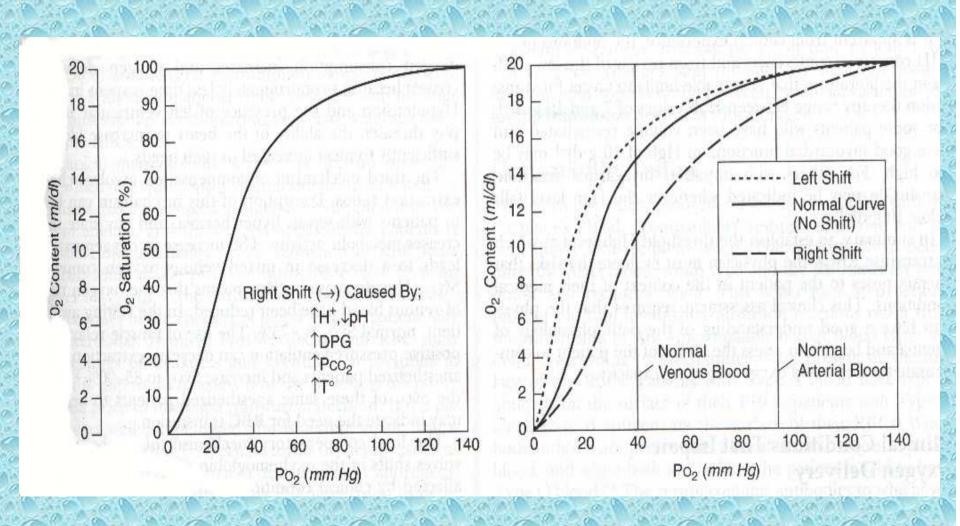
Assunzione di O₂ dai tessuti VO₂
 VO₂= Q_cx 13.4 x Hb x (SaO₂-SvO₂) v.n.110-160 ml/min/m²

CONSEGUENZE DELL'ANEMIA


□RIDUZIONE DELLA VISCOSITÀ
□AUMENTO DEL FLUSSO (legge di Hegen –Poiseuille)
□AUMENTO ESTRAZIONE DI O₂

Trasporto di O_2 (DO₂) = Gittata cardiaca x contenuto art. di O_2 (CaO₂) Consumo di O_2 (VO₂) = Gitt. Cardiaca x (CaO₂ - CvO₂)

Con valori di HB<9 gr/dl l'aumento dell'estrazione di O₂ non è più sufficiente a mantenere un vo₂ costante e l'ossigenazione tissutale comincia a diminuire.


EFFETTI DELL'ANEMIA ISOVOLEMICA PROGRESSIVA SUL DO_2 , SU VO_2 E SULLA FRAZIONE DI ESTRAZIONE DI O_2 (O_2 ER)

UN AUMENTO DELL'ESTRAZIONE DI OSSIGENO COSTITUISCE UN INDICE DI IPOPERFUSIONE SISTEMICA E INCREMENTI MASSIMALI DELL'ESTRAZIONE DI OSSIGENO POSSONO ESSERE SEGNO DI SHOCK IPOVOLEMICO

	SaO ₂	SvO ₂	SaO ₂ –SvO ₂
Normale	>95%	>65%	20-30%
Ipovolemia	>95%	50-65%	30-50%
Shock ipovolemico	>95%	<50%	>50%

CURVE DI DISSOCIAZIONE DELL'Hb

COMPOSIZIONE DEI FLUIDI CRISTALLOIDI ENDOVENOSI

Fluido	Na	CI	K	Ca	Mg	Tamponi	рН	Osmolarità
		mEq/I						(mOsm/l)
Plasma	141	103	4-5	5	2	Bicarbonato [26]	7.4	289
NaCl 0.9%	154	154					5.7	308
NaCl 7,5%	128 3	1283					5.7	2567
Ringer lattato	130	109	4	3		Lattato [28]	6.4	273
Normoso I Plasma- Lyte	140	98	5		3	Acetato [27] Gluconato [23]	7.4	295

- Contiene soltanto Na⁺ e Cl⁻ in quantità equimolari (154 mmol/L di Na⁺ e 154 mmol/L di Cl⁻)
- Ha un PH inferiore rispetto al plasma (5.7 vs 7.4)
- E' leggermente iperosmolare rispetto al plasma (308 mOsm/L vs 289 mOsm/L)
- Si equilibria tra ECF ed ICF, restando come tutti i cristalloidi per 1/3 nello spazio intravascolare (33.3 ml/100 ml infusi)

RINGER LATTATO....

- E' una soluzione polielettrolitica, contiene Na⁺, Cl⁻, K⁺, Ca²⁺
- E' lievemente iposmolare rispetto al plasma (273 mOsm/L vs 289 mosm/L)
- Ha un PH superiore alla SF, anche se ancora inferiore a quello plasmatico (6.4 vs 5.7 vs 7.4)
- Essendo un cristalloide si distribuisce per 1/3 nello spazio vascolare
- Contiene LATTATO che è una fonte lenta e progressiva di GLUCOSIO e BICARBONATI

RINGER LATTATO LATTATO Gluconeogenesi Ossidazione 70% 30% **GLUCOSIO BICARBONATI** I DUE PROCESSI CONSUMANO H+ E LASCIANO LIBERO OH- CHE LEGANDOSI A CO2 PRODUCE H2CO3 CHE HA UN EFFETTO TAMPONANTE L'EVENTUALE ACIDOSI

- L'infusione di SG significa somministrazione di H₂O libera (priva di elettroliti), poiché il glucosio è rapidamente metabolizzato dalle cellule
- L'H₂O libera rapidamente si equilibria tra ECF ed ICF, restando nello spazio INTRAVASCOLARE 7.5 ml/100 ml infusi (1/13)
- Determina IPERGLICEMIA che peggiora un possibile stato di acidosi con formazione di ACIDO LATTICO per metabolismo anaerobio del glucosio, in corso di IPOSSIA (aumenta il rischio di danno cerebrale)
- L'iperglicemia, determinando glicosuria (glc>150 mg/dl), provoca diuresi osmotica
- IPOGLICEMIA neonato < 30 mg/dL bambino < 50 mg/dL

CARATTERISTICHE DEI FLUIDI COLLOIDI ENDOVENOSI

Fluido	Peso molecolare medio	Pressione oncotica	Espansione volume plasmatico	Emivita sierica
	(in Dalton)			
Albumina 5%	69000	20 mmHg	0,7-1,3	16 h
Albumina 25%	69000	70 mmHg	4,0-5,0	16 h
Hetasarch 6%	69000	30mmHg	1,0-1,3	17 gg
Pentastarch 10%	120000	40mmHg	1,5	10h
Destrano-40 10%	26000	40mmHg	1-1,5	6 h
Destrano-70 6%	41000	40mmHg	0,8	12 h

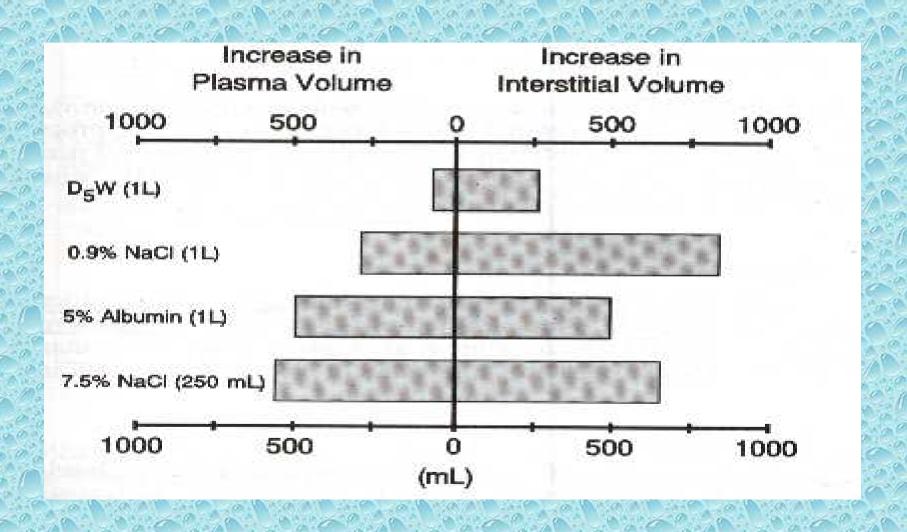
COLLOIDI.....

- Esistono diversi tipi di colloidi sintetici: gelatine, HESs (derivato dell'amilopectina), destrani
- Sono costituiti da molecole ad alto peso molecolare, che infuse nel plasma ne espandono il volume, ma vengono metabolizzate ed escrete a livello renale (IR controindicazione relativa)
- Complicanze più frequenti sono rappresentate da reazioni anafilattoidi e disturbi della coagulazione (si legano al F VIII e Vw)
- Pochi studi in ambito pediatrico: dose max raccomandata 35 ml/kg/die

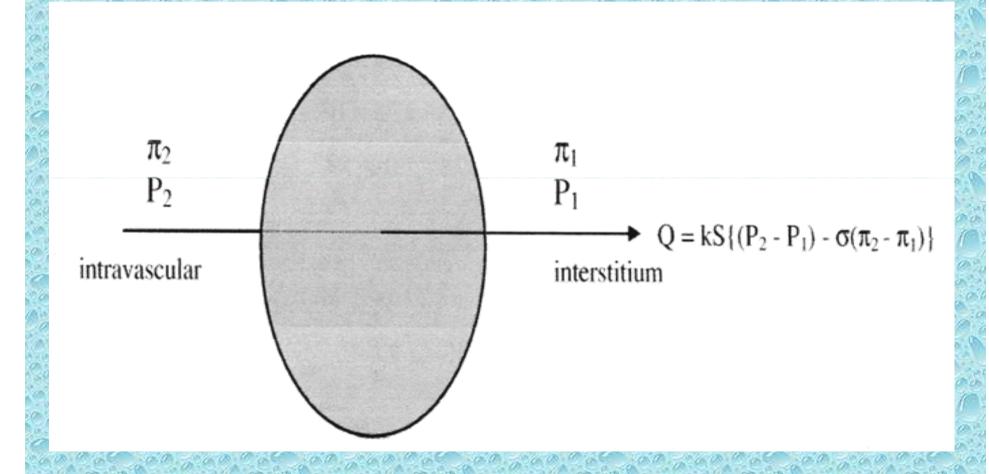
TABLE 27-5 Plasma Expansion, Duration of Action, and Main Side Effects of Plasma Expanders

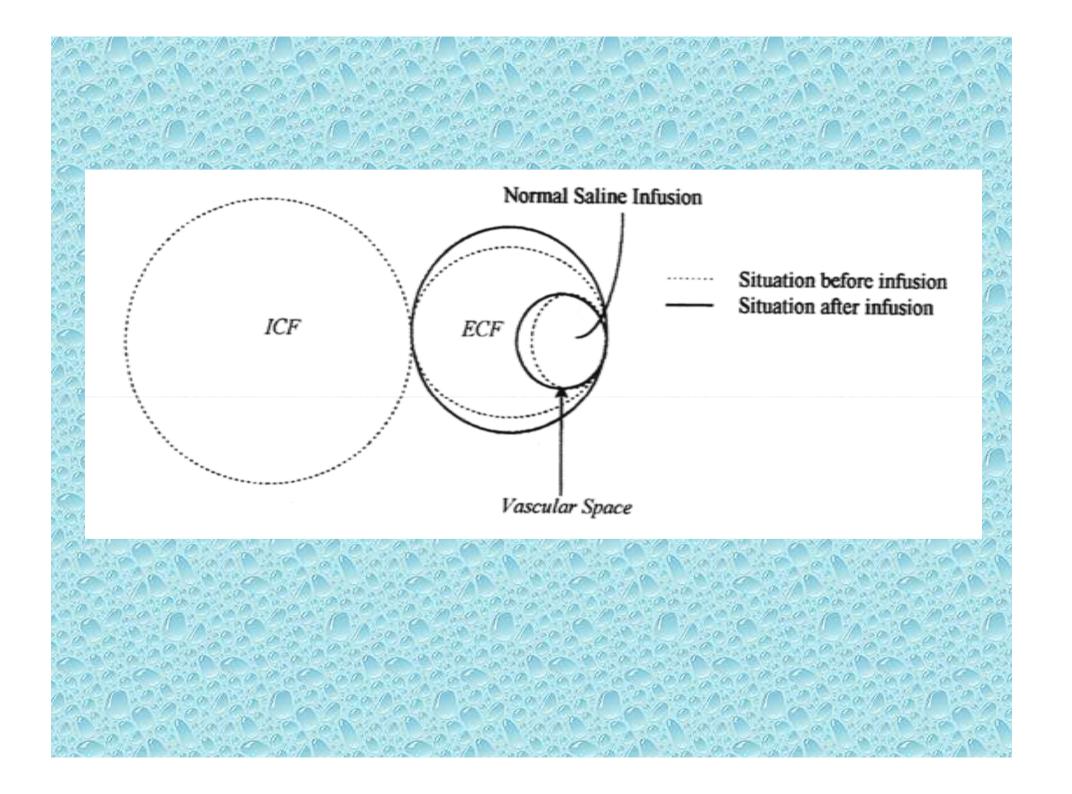
Products	Plasma Expansion (%)	Duration of Action (h)	Allergy	Coagulation
Crystalloids	25	Short	0	Neutral
Gelatins	80–100	3	+++	Neutral
HES 200 (6%) MSR 0.6 MSR 0.5	>100 >100	12–24 4–8	+	Neutral if <30 mL/kg
Dextrans 40 (10%) 40 (3.5%)	180–200 100	3 4	++	Platelet adhesivity Fibrinolysis
Albumin	90	6–8	+	Neutral

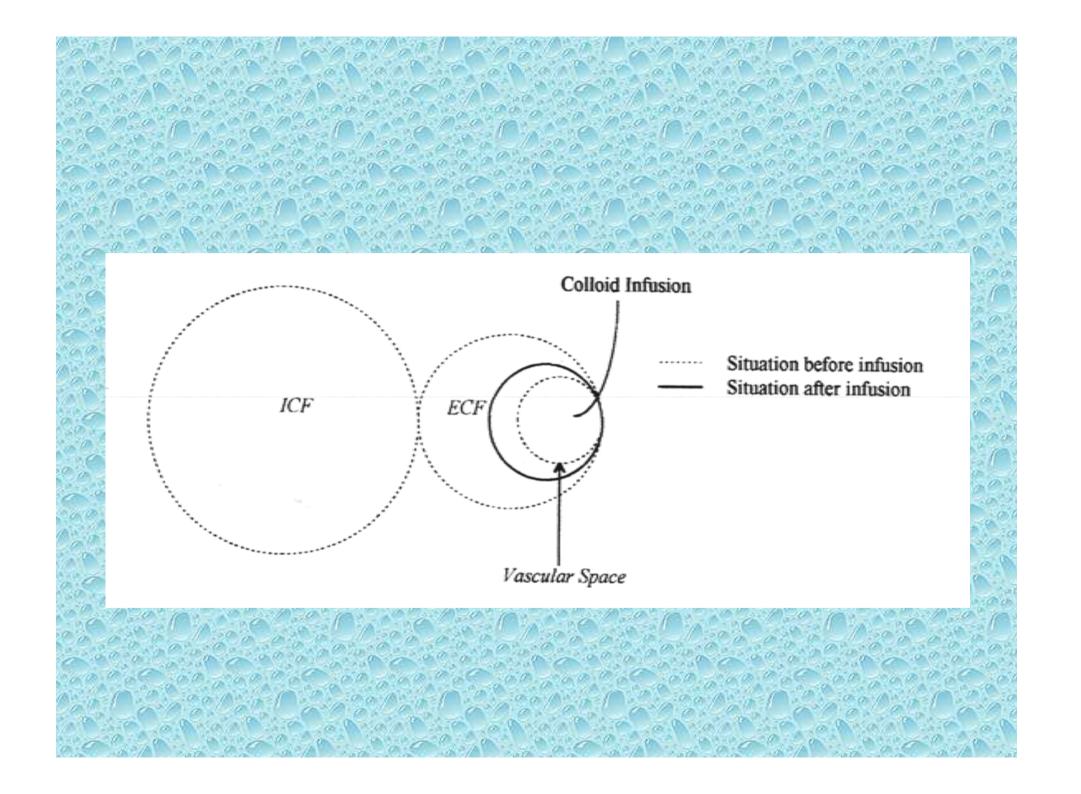
ABBREVIATIONS: HES, hydroxyethyl starch; MSR, molar substitution rate.

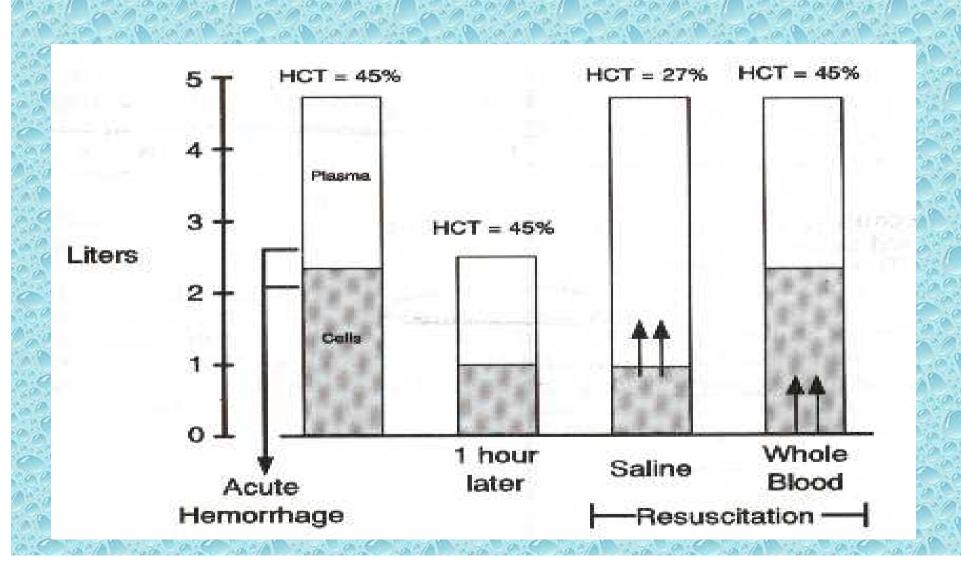

ALBUMINA

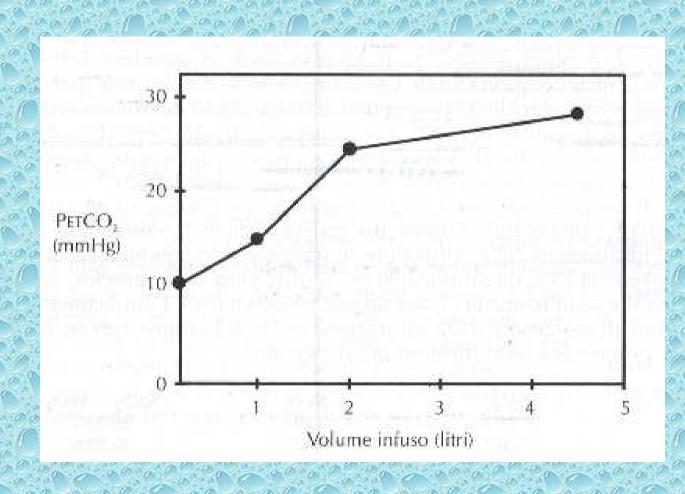
- E' l'unico plasma expander non sintetico disponibile
- Determina 80% della pressione colloidosmotica del plasma
- Ha un emivita plasmatica di circa 16 ore
- Un volume di 500 ml di albumina espande il volume plasmatico di 400 ml
- Dose raccomandata nella correzione dell'ipovolemia è: albumina 5%
 1 ml ogni ml di volume da rimpiazzare


SOLUZIONI SALINE IPERTONICHE


- Soluzione ipertonica al 7.55 è una soluzione osmoticamente attiva pertanto induce la migrazione dell'H₂O dallo spazio intracellulare all'extracellulare
- Ogni ml di SF 7.5% espande il volume plasmatico da 2 a 4 ml
- L'espansione ha una durata molto breve 30 60 minuti e può incrementare la sodiemia


INFLUENZA DI COLLOIDI E CRISTALLOIDI SUL VOLUME EXTRACELLULARE


Legge di Starling


INFLUENZA DELL'EMORRAGIA ACUTA E DELLE INFUSIONI SULL'Hot

UN METODO SEMPLICE PER LA DETERMINAZIONE DEL VOLUME DI FLUIDO NECESSARIO PER LA RIANIMAZIONE

	Sequenza	Descrizione
1.	Valutazione del normale vol. ematico (VE)	
2.	Valutazione della percentuale di perdita del VE (P%)	
3.	Calcolo del deficit di volume (DV)	DV= VE x P%
4.	Determinazione del volume di rianimazione (VR)	VR sangue int. =DV
		VR Colloidi =1.5 x DV
		VR Cristalloidi = 4 x DV
		THE CASE OF THE CASE OF

CO₂ TELESPIRATORIA

TERAPIA TRASFUSIONALE

•Mortalità e morbidità non aumentano se Hb> 7 mg/dl

Consensus statement on red cell transfusion: Proceedings of a consensus conference held by the Royal College of Physicians of Edinburgh, May 9-10,1994.

Br J Anaesth 73:857,1994

•Il decorso perioperatorio è maggiormente influenzato dalla CAUSA piuttosto che dalla GRAVITÀ dell'ANEMIA

Irving GA: Perioperative blood and blood component therapy. Can J Anaesth 39:1105, 1992

•La trasfusione di globuli rossi concentrati in pazienti critici normovolemici ed anemici non migliora gli indici di ossigenazione tissutale e non ha effetti sulla tonometria gastrica. La correzione non è un supporto utile nei pazienti critici

Walsh TS et al.: Does the storage time of transfused red blood cells influence regional or global indexes of tissue oxygenation in anemic critically ill patients?

Critical Care Medicine 32(2): 364; 2004

LINEE GUIDA PER IL BUON USO DEL SANGUE

Nascono per ottimizzare la gestione degli emocomponenti con lo scopo di evitare o ridurre le trasfusioni negli interventi di chirurgia maggiore programmati

Vengono stilati protocolli aziendali basati sulle linee guida internazionali

Fattori che alterano la fisiologica risposta all'anemia isovolemica

Table 1. Factors altering the physiologic response to isovolaemic anaemia

Factors associated with decreased cardiac output response

- Hypovolaemia
- Cardiac failure, negative inotropic agents (i.e. β-blocking agents)
- Coronary and valvular diseases

Factors associated with decreased O2 extraction response

- Sepsis
- Acute respiratory distress syndrome (ARDS)
- Systemic inflammatory response syndrome (SIRS)
- Ischaemia-reperfusion syndrome
- Vasodilating drugs

Factors associated with altered gas exchanges

- ARDS
- Chronic obstructive pulmonary disease

Factors associated with increased O2 consumption

- Fever
- Pain, stress, anxiety
- Sepsis, SIRS
- Hyperventilation syndromes

LA TRASFUSIONE NONE' INDICATA

- · Per mantenere il benessere del pz.
- Per accelerare la guarigione
- Per espandere il volume intravascolare
- In un pz. NON SINTOMATICO

LA TRASFUSIONE E'INDICATA

VO₂ inferiore a 100 ml/min/m²

 Indice di estrazione dell'ossigeno pari a 0.5 in pz con bassa gittata cardiaca

INDICAZIONI ALLA TRASFUSIONE

British Journal of Haematology 2001.113,24-31

 La trasfusione di GRC non è indicata con Hb > 10 g/dl.

 La trasfusione di GRC è indicata con Hb< 7 g/dl.

• 7< Hb< 10 g/dl ?

SANGUE conservato tra 1-6° in CPD

INTERO Ht 30-40%

GRC
 Ht 60-80%
 Hb 23-27 g/dl

Hb_{post}= Hb_{pre}+ (unità trasfusex70/peso)-[(perdite ematichexHb_{pre})/(pesox70)]

VOLUME EMATICO 70 ml/kg

RISCHI DELLA TRASFUSIONE

- Intossicazione da Citrato
- · Variazioni dell'equilibrio acido-base
- Diminuzione del 2,3-DPG
- Iperkaliemia
- Ipotermia
- Formazione di microaggregati
- Reazioni immuno-mediate

immunomodulazione emolisi immediata emolisi tardiva reazione alle proteine plasmatiche

Problemi infettivi

RISCHIO INFETTIVO

INFEZIONI

RISCHIO X UNITA'
DI SANGUE

REFERENCE

Epatite A

Epatite B

Epatite C

Hiv

Parvovirus B19

Infezioni batteriche

1/1000000

1/170000

1/200000

<1/2000000

1/10000

1/500000

Dodd 1994

Regan 2000

Regan 2000

Regan 2000

Dodd 1994

Sazama 1990

EMORRAGIA ACUTA MASSIVA

Ripristinare il volume circolante

- 1. Posizionare ago-cannula 14 G
- 2. Somministrare cristalloidi-colloidi o sangue riscaldati
- 3. Mantenere PA e Diuresi >30 ml/h
- 4. Riscaldare il pz

Chiedere aiuto a

MEDICO DI GUARDIA MEDICO REPERIBILE ANESTESISTA TRASFUSIONALE

Arrestare il sanguinamento

CHIRURGIA PRECOCE
DIAGNOSI RADIOLOGICA, RADIOLOGIA INERVENTISTICA

Indagini di laboratorio

EMOCROMO, QE, FIBRINOGENO BIOCHIMICO, EGA,

1

RIPETERE OGNI 4 ORE O DOPO AVER RIMPIAZZATO

1/3 VOLUME PERSO O DOPO INFUSIONE DI

EMOCOMPONENTI

Richiedere sangue

EMERGENZA 2 unità 0 NEG non crociato

(Rh POS solo a maschi o donne dopo la menopausa)

ABO non crociato se gruppo noto

(richiedere gruppo e compatibilità)

UTILIZZA DEVICE PER TRASFONDERE SANGUE RISCALDATO E A RAPIDA INFUSIONE

TECNICHE AUTOTRASFUSIONALI

Tecniche in cui il paziente "dona sangue" a se stesso ed in caso di necessità riceverà il proprio sangue.

- Predeposito
- Emodiluizione acuta preoperatoria
- Recupero intraoperatorio di sangue

Predeposito

Durante le settimane precedenti all'intervento chirurgico, il paziente dona sangue a se stesso.

Il sangue raccolto in sacche apposite viene conservato in frigoriferi a temperatura costante (emoteche) e potra' essere trasfuso al paziente, se sara' necessario, durante o dopo l'intervento chirurgico.

Predeposito

Indicazioni

 Interventi in elezione che prevedono perdite ematiche > 600 ml

Tecnica

 Possono essere eseguiti fino a tre prelievi con intervallo minimo di almeno 3-4 giorni. Devono trascorrere almeno 72 ore tra l'ultimo prelievo e l'intervento

Emodiluizione acuta preoperatoria

- Consiste nella diluizione di tutti i componenti ematici
- Si esegue sostituendo una quota della massa ematica con un liquido privo di cellule.
- Viene definita normovolemica se condotta in maniera tale da mantenere entro limiti fisiologici il volume ematico.
 - Viene definita acuta se eseguita immediatamente prima di un atto chirurgico.

Recupero intraoperatorio

Durante gli interventi chirurgici esiste sempre un certo sanguinamento, che viene raccolto aspirando dal campo operatorio.

Il sangue così raccolto viene sottoposto a separazione, filtrazione e lavaggio prima di essere reinfuso, ad opera di una macchina (autotrans).

Il sangue reinfuso ha un ematocrito leggermente inferiore a quello del paziente al momento della perdita.

INDICAZIONE ALLA TRSFUSIONE DEI COMPONENTI EMATICI

PIASTRINE

INDICAZIONI

< 100000/mm³ disfunzione piastrinica, fans, uremia, Glanzmann's tromboastenia

< 40000/mm³ trasfusione massiva

< 20000/mm³ depressione midollare

< 10000/ mm³ porpora trombocitipenica idiopatica

1 UNITA' PIASTRINICA INCREMENTA LA CONTA DI 7500-10000

1 UNITA' OGNI 10 Kg

CONTROINDICAZIONI

Porpora trombocitopenica immunomediata Profilassi nelle trasfusioni massive

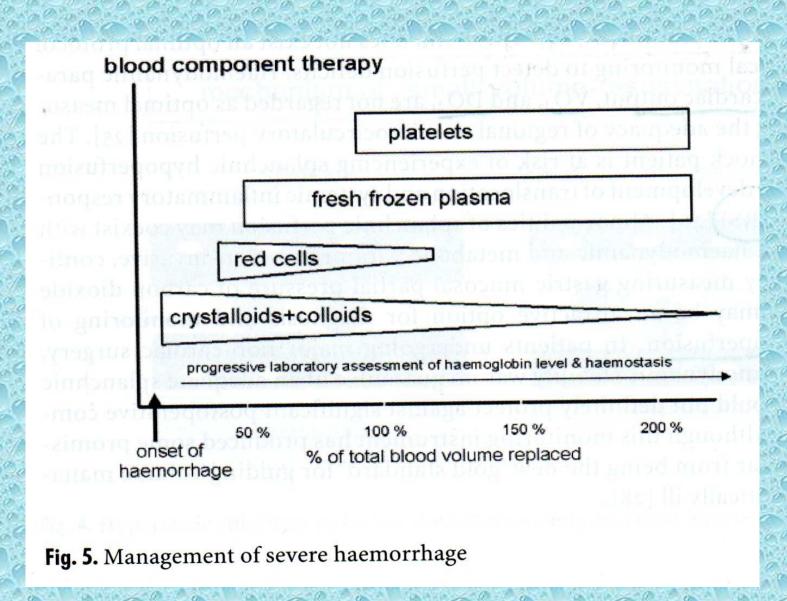
INDICAZIONE ALLA TRSFUSIONE DEI COMPONENTI EMATICI

PLASMA

INDICAZIONI

Deficit dei fattori della coagulazione Porpora trombotica trombocitopenica Trasfusioni massive

DOSE EMPIRICA


5-10 ml/Kg

CONTROINDICAZIONI

Trattamento dell'ipovolemia Carenze nutrizionali

> IL PLASMA E' IL PRODOTTO EMATICO PIU' UTILIZZATO IN ASSENZA DI INDICAZIONI REALI FACENDO AUMENTARE IL RISCHIO INFETTIVO

Management della severa emorragia

Massive Transfusion in acute trauma patient

Guidelines to Blood Product Transfusions

 In 1994, the ASA established the Task Force on Blood Component Therapy to develop evidence-based guidelines for transfusing blood products in perioperative and trauma settings

Massive Transfusion

- La trasfusione in meno di 24 ore di una quantità di sangue pari o superiore al volume ematico totale del paziente
- Trasfusione di 8-10 unità di GRC in 24 ore

American College of Surgeon's Classes of Acute Hemorrhage

Class	I	II	III	IV
Blood loss (ml)	≤750	750-1500	1500-2000	≥ 2000
Blood loss (% blood volume)	≤15%	15-30%	30-40%	≥40%
Pulse rate	<100	>100	>120	≥ 140
Blood pressure	Normal	Normal	Decreased	Decreased
Pulse pressure (mmHg)	Normal or increased	Decreased	Decreased	Decreased
Capillary refill test	Normal	Positive	Positive	Positive
Respiratory rate	14-20	20-30	30-40	>35
Urine output (ml/hr)	≥ 30	20-30	5-15	Negligible
CNS-mental status	Slightly anxious	Mildly anxious	Anxious and confused	Confused, lethargic
Fluid replacement (3:1 rule)	Crystalloid	Crystalloid	Crystalloid + Blood	Crystalloid + Blood

Blood Products Transfusion

- Packed Red Blood
 Cells
- Fresh FrozenPlasma
- Platelets
- Fibrinogen
- Cryoprecipitate

OBIETTIVO PRIMARIO

Evitare nel paziente traumatizzato la triade mortale:

ACIDOSI
IPOTERMIA
COAGULOPATIA

- EMORRAGIA: prima causa di morte nelle prime 24 ore
- ALTERAZIONE DELL' EMOSTASI: seconda causa di morte nelle prime 24 ore

Pathophysiology of Coagulopathy in Massive Transfusions

EARLY trauma induced coagulopaty (ETIC)

LATE (Secondary)

Pathophysiology of Coagulopathy in Massive Transfusions

EARLY

Acute trauma induced coagulopathy

Si generano immediatamente alterazioni della coagulalzione, si ha ↑PT, ↑ PTT, ↑ TT

Dai risultati di studi retrospettivi queste alterazioni di laboratorio si correlano con aumentata mortalità

PT: fattore indipendente di mortalità

 Coagulopatia intra-vasale disseminata (CID)

Proteina C attivata

- Trauma, danno endoteliale, rilascio massivo di fattore tissutale, ↑la produzione di trombina, attivazione massiva della coagulazione, formazione di microtrombi diffusi, coagulopatia da consumo (CID): sanguinamento
- CID e massiva risposta infiammatoria,
 Coagulazione ed infiammazione sono due sistemi strettamente correlati

- CID non è una malattia ma il risultato di una risposta infiammatoria massiva
- CID è un fattore predittivo di MOF, ARDS
- Diagnosi clinica e di laboratorio
- Clinica: Sanguinamento massivo e disfunzione d'organo (microtrombi)
- Laboratorio:↑PT, ↑PTT, ↑D-dimero,
- ↑PAI-1,↓PLT, ↓fibrinogeno

- Ipossia, ipotensione, ipotermia e vasocostrizione determinano attivazione della Proteina C, anticoagulante naturale
- Proteina C: la trombina si lega alla trombomodulina , proteina endoteliale, trombina + trombomodulina attivazione della proteina C
- Proteina C attivata si lega alla proteina S, inattiva il fattore Va e VIIIa
- Proteina C si lega all'endothelian cell protein C receptor (EPCR) ha attività anti-infiammatoria: inibisce apoptosi, diminuisce adesione molecolare, diminuisce NF-Kβ

LATE

 Si instaura più lentamente ed è secondaria ad eventi che possono essere evitati quali:

Emodiluizione

(Fluidoterapia)

Acidosi

(DO₂)

Ipotermia

(Riscaldare)

Hemodilution

Crystalloids

Colloids

MANAGEMENT

- Mantenere un adeguato flusso ematico
- Infondere adeguato volume di cristalloidi e/o colloidi
- Obiettivo EUVOLEMIA
- Cristalloidi vs colloidi (Dibattito ancora aperto)

TRAUMA: IN EMERGENZA

RICHIEDERE:

- GRC gruppo O RH neg, se possibile, o gruppo 0 RH positivo in donne in età non fertile o in maschi adulti
- Plasma AB
- Il gruppo va tipizzato il prima possibile:
- Trasfusioni eccessive di gruppo O neg e plasma
 AB possono mascherare il vero gruppo del pz
- Somministrazione di colloidi possono mascherare il gruppo

- Un protocollo per il trattamento aggressivo
- Riduzione dei tempi di comunicazione tra il trauma team, il servizio trasfusionale ed il laboratorio
- Standardizzare una procedura
- Evitare errori in situazioni di emergenzaurgenza

- Trattamento RAPIDO ed AGGRESSIVO emorragia massiva nel paziente traumatizzato
- Comunicazione
 MULTIDISCIPLINARE

• NEGLI ANNI PASSATI:

somministrazione di elevati volumi di cristalloidi ,colloidi e GRC. Gli esami di laboratorio avevano un ruolo fondamentale nella scelta terapeutica.

Nascevano 2 problematiche:

Tempo perduto

Quadro in continua evoluzione del pz

 ATTUALMENTE: trasfondere precocemente sangue e gli altri emoderivati, con l'obiettivo di ridurre la coagulopatia da diluizione ed i tempi di attesa.

Trasfusione di Plasma:PLT:GRC in

rapporto 1:1:2 o 1:1:3

Transfusion Packages

OBIETTIVO:
 Ricostituire il sangue intero perduto